大数据分析过程阶段,对大数据的分析利用过程是怎样的
来源:整理 编辑:问船数据网 2024-06-19 10:38:03
1,对大数据的分析利用过程是怎样的
比如你是做生意的,通过会员积分返利的形式收集了经销商信息,每次拿货做个记录,几次后就可以分析出他大概多久拿一次货,大概会拿多少,你就可以根据数据做好进货计划等等大数据分析是指对规模巨大的数据进行分析。大数据可以概括为5个v, 数据量大(volume)、速度快(velocity)、类型多(variety)、value(价值)、真实性(veracity)。
2,大数据的分析步骤
大数据的含义 并非仅仅是指数据量非常庞大,同样是指数据的类别多样化,比如图片类信息、音频类信息、视频类信息、文字类信息等,同样被包含在大数据内。所以领域非常广,可以说以前传统意义上的各种信息分析,都包含在大数据分析的含义内。无论是现在流行的大数据分析还是传统的小数据分析,大致步骤都是一样的:首先你要确定你的分析目的是什么其次是根据分析目的确定分析思路,以及分析的内容、分析的方法第三是根据目的、思路、方法、内容 收集数据信息第四 是 采用确定的分析方法 进行相应的分析 以实现目的
3,如何进行大数据分析及处理
1. 可视化分析。大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。2.
数据挖掘算法。大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。3. 预测性分析。大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。4. 语义引擎。非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。5.数据质量和数据管理。大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。6大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
4,大数据分析应该掌握哪些基础知识
随着互联网行业的不断发展。很多人想要从事互联网方面的工作,现在非常流行的就是大数据,你了解大数据是做什么的吗?学习大数据需要掌握哪些知识?大数据在未来有很大的发展机会,每个岗位需要具备的能力是不同的。下面小编为大家介绍学习大数据需要掌握的知识。大数据业务流程有四个基本步骤,即业务理解,数据准备,数据挖掘和分析应用程序。该过程分为三个功能区:大数据系统开发,整个操作系统的构建和维护,数据准备,平台和工具开发。大数据挖掘,负责关键模型应用和研究工作。大数据分析应用程序:两者都是外部需求的访问者也是解决方案的输出,并且在许多情况下还将承担整体协调的作用。大数据提取转换和加载过程(ETL)是大数据的重要处理环节。提取是从业务数据库中提取数据。转换是根据业务逻辑规则处理数据的过程。负载是将数据加载到数据仓库的过程中。数据提取工具实现了db到hdfs的数据导入功能,并提供了高效的分布式并行处理能力。可以使用数据库分区,字段分区和基于分页的并行批处理将db数据提取到hdfs文件系统中,从而可以有效地按字段解析分区数据。数据收集可以是历史数据采集或实时数据采集。它可以收集存储在数据库中的结构化数据,或收集非结构化数据,如文本,图片,图像,音频,视频等。结构变化较大的半结构化数据,可以在数据后直接存储在流量状态分析平台上收集完成。数据分析师需要的技能大致有这些:Excel、SQL、统计学及SPSS、Python/R等。建议从Excel开始,因为Excel是使用最多,也是最强大的数据分析工具,入门简单,因为大部分人都接触过Excel。
5,大数据处理的过程是怎么样的
您好,主要是检索某段时间内的模拟量值(select * from table where datatime between t1 and t2 ),目前打算使用分表,分区的方式解决不纸上谈兵,说一下我的思路以及我的解决,抛砖引玉了 我最近正在解决这个问题 我现在的公司有三张表,是5亿的数据,每天张表每天的增量是100w 每张表大概在10个columns左右 下面是我做的测试和对比 1.首先看engine,在大数据量情况下,在没有做分区的情况下 mysiam比innodb在只读的情况下,效率要高13%左右 2.在做了partition之后,你可以去读一下mysql的官方文档,其实对于partition,专门是对myisam做的优化,对于innodb,所有的数据是存在ibdata里面的,所以即使你可以看到schema变了,其实没有本质的变化 在分区出于同一个physical disk下面的情况下,提升大概只有1% 在分区在不同的physical disk下,我分到了三个不同的disks下,提升大概在3%,其实所谓的吞吐量,由很多因素决定的,比如你的explain parition时候可以看到,record在那一个分区,如果每个分区都有,其实本质上没有解决读的问题,这样只会提升写的效率。 另外一个问题在于,分区,你怎么分,如果一张表,有三个column都是经常被用于做查询条件的,其实是一件很悲惨的事情,因为你没有办法对所有的sql做针对性的分区,如果你只是如mysql官方文档上说的,只对时间做一个分区,而且你也只用时间查询的话,恭喜你 3.表主要用来读还是写,其实这个问题是不充分的,应该这样问,你在写入的时候,同时并发的查询多么?我的问题还比较简单,因为mongodb的shredding支持不能,在crush之后,还是回到mysql,所以在通常情况下,9am-9pm,写入的情况很多,这个时候我会做一个view,view是基于最近被插入或者经常被查询的,通过做view来分离读取,就是说写是在table上的,读在进行逻辑判断前是在view上操作的 4做一些archive table,比如先对这些大表做很多已有的统计分析,然后通过已有的分析+增量来解决 5如果你用mysiam,还有一个问题你要注意,如果你的.configure的时候,加了一个max index length参数的时候,当你的record数大于制定长度的时候,这个index会被disable 6 照你的需求来看,可以有两种方式,一种是分表,另一种是分区首先是分表,就像你自己所说的,可以按月分表,可以按用户id分表等等,至于采用哪种方式分表,要看你的业务逻辑了,分表不好的地方就是查询有时候需要跨多个表。然后是分区,分区可以将表分离在若干不同的表空间上,用分而治之的方法来支撑无限膨胀的大表,给大表在物理一级的可管理性。将大表分割成较小的分区可以改善表的维护、备份、恢复、事务及查询性能。分区的好处是分区的优点:1 增强可用性:如果表的一个分区由于系统故障而不能使用,表的其余好的分区仍然可以使用;2 减少关闭时间:如果系统故障只影响表的一部分分区,那么只有这部分分区需要修复,故能比整个大表修复花的时间更少;3 维护轻松:如果需要重建表,独立管理每个分区比管理单个大表要轻松得多;4 均衡i/o:可以把表的不同分区分配到不同的磁盘来平衡i/o改善性能;5 改善性能:对大表的查询、增加、修改等操作可以分解到表的不同分区来并行执行,可使运行速度更快;6 分区对用户透明,最终用户感觉不到分区的存在。
文章TAG:
大数据 数据 数据分析 分析 过程 大数据分析过程阶段